Package: nonlinearICP 0.1.2.1
Christina Heinze-Deml
nonlinearICP: Invariant Causal Prediction for Nonlinear Models
Performs 'nonlinear Invariant Causal Prediction' to estimate the causal parents of a given target variable from data collected in different experimental or environmental conditions, extending 'Invariant Causal Prediction' from Peters, Buehlmann and Meinshausen (2016), <arxiv:1501.01332>, to nonlinear settings. For more details, see C. Heinze-Deml, J. Peters and N. Meinshausen: 'Invariant Causal Prediction for Nonlinear Models', <arxiv:1706.08576>.
Authors:
nonlinearICP_0.1.2.1.tar.gz
nonlinearICP_0.1.2.1.zip(r-4.5)nonlinearICP_0.1.2.1.zip(r-4.4)nonlinearICP_0.1.2.1.zip(r-4.3)
nonlinearICP_0.1.2.1.tgz(r-4.4-any)nonlinearICP_0.1.2.1.tgz(r-4.3-any)
nonlinearICP_0.1.2.1.tar.gz(r-4.5-noble)nonlinearICP_0.1.2.1.tar.gz(r-4.4-noble)
nonlinearICP_0.1.2.1.tgz(r-4.4-emscripten)nonlinearICP_0.1.2.1.tgz(r-4.3-emscripten)
nonlinearICP.pdf |nonlinearICP.html✨
nonlinearICP/json (API)
# Install 'nonlinearICP' in R: |
install.packages('nonlinearICP', repos = c('https://christinaheinze.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/christinaheinze/nonlinearicp-and-condindtests/issues
- simData - Example dataset for tests
Last updated 5 years agofrom:e6808046f2. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 04 2024 |
R-4.5-win | OK | Nov 04 2024 |
R-4.5-linux | OK | Nov 04 2024 |
R-4.4-win | OK | Nov 04 2024 |
R-4.4-mac | OK | Nov 04 2024 |
R-4.3-win | OK | Nov 04 2024 |
R-4.3-mac | OK | Nov 04 2024 |
Exports:nonlinearICPvarSelectionRF
Dependencies:bitopsbootcaToolscodetoolsCondIndTestsdata.treeforeachglmnetiteratorsKendallkernlablatticelawstatMASSMatrixmgcvmizemvtnormnlmepracmaquantregForestR6randomForestrbibutilsRColorBrewerRcppRcppEigenRdpackRPtestsshapestringisurvival